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Overview
The dual negation - is the negation used in the original formulations of first-order dependence

logic D. This kind of notion of negation is naturally induced by game-theoretic semantics.

In the classical fragment of D, the dual negation is equivalent to the classical negation.
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The dual negation - is the negation used in the original formulations of first-order dependence
logic D. This kind of notion of negation is naturally induced by game-theoretic semantics.

In the classical fragment of D, the dual negation is equivalent to the classical negation.

But for arbitrary sentences ¢ and i, ¢ = v does not imply —¢ = —1. In other words, the class
of models ||¢|| of ¢ does not determine ||-¢||. So - does not correspond to any well-defined

semantic operation, whereas e.g. ||¢ A || = ||¢]| N ||[¥]]-
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logic D. This kind of notion of negation is naturally induced by game-theoretic semantics.

In the classical fragment of D, the dual negation is equivalent to the classical negation.

But for arbitrary sentences ¢ and i, ¢ = v does not imply —¢ = —1. In other words, the class
of models ||¢|| of ¢ does not determine ||-¢||. So = does not correspond to any well-defined
semantic operation, whereas e.g. ||¢ A || = ||¢]| N ||[¥]]-

Burgess (2003) showed (in the equivalent context of Henkin sentences) that this lack of
determination is extreme: for any sentences ¢ and 1 that share no models, there is some
sentence 6 such that 6 = ¢ and -0 = . So given only ||¢||, we do not know anything about
|- except ||¢]| n||-~¢|| = @ (and that ||~¢|| is expressible in D). Kontinen & Vaananen (2011)
generalized this to open formulas.
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But for arbitrary sentences ¢ and i, ¢ = v does not imply —¢ = —1. In other words, the class
of models ||¢|| of ¢ does not determine ||-¢||. So - does not correspond to any well-defined
semantic operation, whereas e.g. ||¢ A || = ||¢]| N ||[¥]]-

Burgess (2003) showed (in the equivalent context of Henkin sentences) that this lack of
determination is extreme: for any sentences ¢ and 1 that share no models, there is some
sentence 6 such that 6 = ¢ and -0 = . So given only ||¢||, we do not know anything about
|- except ||¢]| n||-~¢|| = @ (and that ||~¢|| is expressible in D). Kontinen & Vaananen (2011)
generalized this to open formulas.

Aloni's (2022) Bilateral State-based Modal Logic (BSML) makes use of a bilateral negation
which is essentially the same notion as the dual negation. BSML differs from D in being

modal rather than first-order, and not being downward closed. We show that Burgess’ result
holds for BSML and an extension of BSML.
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Syntax of first-order dependence logic D without the dual negation:
o = ti=t|-(t1=t) | Rt | =Rt | =(t1,...,tn,t) | ¢ AY | DV |3Ixp | Vx¢

Where the t; are FO terms. l.e. we have FO formulas together with dependence atoms
=(ty,..., ty, t); negation is only allowed to occur in front of atomic FO formulas.
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Syntax of first-order dependence logic D without the dual negation:

¢ = t=t|-(h=t)|RE|-RE| =(tr,....tn,t) [dAY [PV |Ixd | Vxo

Where the t; are FO terms. l.e. we have FO formulas together with dependence atoms
=(ty,..., ty, t); negation is only allowed to occur in front of atomic FO formulas.

Intuitive meaning of =(t1,. .., t,, t): the value of t is completely determined by the values of
t1,...,th.
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Where the t; are FO terms. l.e. we have FO formulas together with dependence atoms
=(ty,..., ty, t); negation is only allowed to occur in front of atomic FO formulas.

Intuitive meaning of =(t1,. .., t,, t): the value of t is completely determined by the values of
t1,...,th.

Team semantics: formulas are interpreted with respect to teams. Given a model M and set
of variables V, a team X of M with domain V is a set of assignments s: V — dom(M). The
interpretation s(t*™) of t under M and s is defined as usual.
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o = ti=t|-(t1=t) | Rt | =Rt | =(t1,...,tn,t) | ¢ AY | DV |3Ixp | Vx¢

Where the t; are FO terms. l.e. we have FO formulas together with dependence atoms
=(ty,..., ty, t); negation is only allowed to occur in front of atomic FO formulas.

Intuitive meaning of =(t1,. .., t,, t): the value of t is completely determined by the values of
t1,...,th.

Team semantics: formulas are interpreted with respect to teams. Given a model M and set
of variables V, a team X of M with domain V is a set of assignments s: V — dom(M). The
interpretation s(t*™) of t under M and s is defined as usual.

Mx=(t1, ..., ty, t) iff Vs,5" € X: if s(tM) = s'(tM),...,s(tM) = ' (tM), then
s(tM) = s'(tM).

- | ’; i Z In the team X = {s1, 5}, X ==(x,y) and X p=(x, z).
51 3 b e X E=(y) because the value of y is constant in X.
2
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Given a model M with domain M, a team X of M and F: X - M let:
X(F/X) =
X(M/x) =

{s(F(s)/x) | se X}
{s(a/x)|aeM,seX}
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Given a model M with domain M, a team X of M and F: X - M let:

X(F/x) = {s(F(s)/x) |seX}

X(M/x) = {s(a/x)|aeM,seX}
|x y =z
Team X of M X X(Fly)(M/z) s;| b a a
where s1 | b where 1 b a b
M ={a, b} s | a F(s1)=a, F(s2)=b s51a b a
s, |a b b

Or <@ «=» «2» =
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Given a model M with domain M, a team X of M and F: X - M let:

X(F/x) = {s(F(s)/x)|seX}
X(M/x) = {s(a/x)|ae M,se X}
‘ X y z
Team X of M X X(Fly)(M/z) s;| b a a
where s1| b where s | b a b
M = {a, b} 5| a F(s1)=a, F(s2)=b sjla b a
s,|a b b
We define M Ex ¢ by:
MEx a iff VseX: MEsa for a an FO atom or negated FO atom
MEx=(t1,... tn,t) iff Vs, s"eX: if s(t!M)=s"(t")...s(tM) = s'(tM) then s(t™) = s'(+M)
MEx dnrp iff MEx¢and MEx
MEx dvap iff 3Y,Z:X=YuZand MEy ¢ and M=z
M Ex Ixd iff M E=x(F/x) ¢ for some F: X - M
M Ex Yx¢ iff M FEXx(M/x) ¢

A sentence ¢ is true in M (M i ¢) iff M =5, ¢. {@} contains only the empty assignment.. .. , 5,
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To get D with the dual negation, allow - to appear anywhere and define both a positive
semantic notion =x and a negative notion =x:

MEx a

M-=Hx a
MEx=(t1,...,tn, t)
M =x=(t1,... ty, t)
MExovy

M=Ex dpv

M E=x Ixg

M =Hx Ix¢
MEx -¢

M =x -

iff
iff
iff
iff
iff
iff
iff
iff
iff
iff

Vse X : MEsa for a an FO atom or negated FO atom

Vse X : M HEsa for a an FO atom or negated FO atom

Vs,s' e Xt if s(t]) =s'(£M) ... s(tM) = s'(tM) then s(t™) = s'(t™)
X=2

Y, Z: X=YuZ and My ¢ and M =z ¢

M =x ¢ and M =Hx ¢

M Ex(Fx) ¢ for some F: X - M

M =xmyx) @

M=Ex ¢

MEx o

(We can define A= v = and V := =3-.)
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The dual negation arises naturally in the context of game-theoretic semantics for D: "the
game-theoretic intuition behind —¢ is that it says something about the other player.”
(Vaananen 2007)
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The dual negation arises naturally in the context of game-theoretic semantics for D: "the
game-theoretic intuition behind —¢ is that it says something about the other player.”

(Vaananen 2007)

A semantic game for D has two players, | and /I. For a given M, a position in the game G(¢) is a triple
(¢, X, d) where 9 is a formula, X a team on M and d € {0,1}. G(¢) is defined as follows. The starting
position is (¢, {@},1}. Given position (¢, X, d):

If ¢ is a FO atom and d =1, the game ends. I/ wins if Vs € X : M =5 v; otherwise | wins.
If ¢ is a FO atom and d =0, the game ends. /I wins if Vs € X : M s 1); otherwise | wins.
If ¢ is =(t1,...,tn, t) and d = 1, the game ends. Il if M Ex=(t1,...,tn,t); otherwise | wins.
If ¢ is =(t1,...,tn, t) and d = 0, the game ends. Il if X = &; otherwise | wins.

Ifp=xvnand d=1, Il chooses Y,Z s.t. X =Y uZ. | chooses whether the game continues from
X, Y, 1) or (n,Y,1).

If p=xVvnand d=0, | chooses whether the game continues from (x, X,0) or (n, X,0).
If » = 3xx and d =1, Il chooses F : X — M and the game continues from (x, X(F/x),1).
If ¢ = 3xx and d = 0, the game continues from (x, X(M/x),0).

If » = =x and d =1, the game continues from (x, X,0).

If » = =x and d =0, the game continues from (x, X, 1).
6/34



Let p = iff YM:VX on M: M =x ¢ implies M =x 9; and ¢ = iff ¢ =1 and ¢ = ¢.
We have the following equivalences:

¢ = ¢

=(¢ V) = ¢ A=
(¢ A1) = -V =)
-3x¢ = Vx=¢
-Vx¢ = Ax=¢

A 7734
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Let ¢ =1 iff YM: VX on M: M =x ¢ implies M =x ¢; and ¢ = iff ¢ =9 and ¢ E ¢.
We have the following equivalences:

-0 = 0
~(pv ) = 6 A~
(o A) = ¢V )
-3x¢ = Vx-¢
-Vxo = Ix-¢

So a simpler, equivalent way of defining the dual negation is as follows. Only define M E=x -¢
when ¢ is an atom:

MEx -~«a iff Vse X : MHEsa for a an FO atom
MiEx -=(t1,...,ta, t) iff X=0
and for other negated formulas —¢, take —¢ to be an abbreviation of a formula in negation

normal form acquired by employing the equivalences above.
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Examples:

X

S1 b
S2

Here M Fx (x = a)A =(x) and also M ¥x =((x = a)A =(x)):

MEx -((x=a)A=(x)) = MEx -(x=a)Vv-=(x)

<~ Y, Z: X=YuZand MEy -(x=a)and Z=02

N /34
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Examples:
X
S1 b
So a

Here M x (x = a)A =(x) and also M Ex —~((x = a)A =(x)):

Mix ~((x = 2)A =(x)) = M x ~(x =) v~ =(x)
<~ Y, Z: X=YuZand MEy -(x=a)and Z=02

Let M be a model with [M| > 2. Let 6 := Vx =(x). Then:

M Ex by = MEx Vx=(x) = MExmu/x)=(x)

< VseX:Va,be M:s(a/x)=s(b/x) — X=0
M E=x =6y = MEx -Vx=(x) < M Ex Ix-=(x)

<~ IF: X->M: M #X(F/X)Z(X)

«— FF: X>M: X(F/x)=0 — X=0
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Some properties and results:
The empty dependence atom =() is always true. Denote 1:= = =(). Then 1L = - =(x) but
=()=-1#£--=(x)==(x). So p=¢ = -¢=-.
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Some properties and results:

The empty dependence atom =() is always true. Denote 1:= = =(). Then 1L = - =(x) but
=()=-L# - =(x)==(x). So p =1 = ¢ = ).

On the other hand, let ¢ and v be strongly equivalent ¢ =" ¢ iff p = and -¢ = ).
Then ¢ =* ¢ = —¢ =" —1p and more generally
P(x) =" P(x) = x[o(x)/Px] =" x[¥(x)/PX].
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Some properties and results:

The empty dependence atom =() is always true. Denote 1:= = =(). Then 1 = - =(x) but
S0 =L # = =(x) ==(x). S0 =1 > =6 =

On the other hand, let ¢ and v be strongly equivalent ¢ =" ¢ iff p = and -¢ = ).
Then ¢ =* ¢ = —¢ =" —1p and more generally

P(x) =" P(x) = x[o(x)/Px] =" x[¥(x)/PX].

a is first order/classical if no dependence atoms appear in «. Classical formulas « are
flat: M =x a < Vse X: M =5 a. In particular, the dual negation coincides with the
classical negation for classical formulas: M Ex ~a < Vse X : M k&, -a.
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Some properties and results:

The empty dependence atom =() is always true. Denote 1:= = =(). Then 1 = - =(x) but
S0 =L # = =(x) ==(x). S0 =1 > =6 =

On the other hand, let ¢ and v be strongly equivalent ¢ =" ¢ iff p = and -¢ = ).
Then ¢ =* ¢ = —¢ =" —1p and more generally

P(x) =" P(x) = x[o(x)/Px] =" x[¥(x)/PX].

a is first order/classical if no dependence atoms appear in «. Classical formulas « are
flat: M =x a < Vse X: M =5 a. In particular, the dual negation coincides with the
classical negation for classical formulas: M Ex ~a < Vse X : M k&, -a.

Empty team property: M =4 ¢ for all ¢. (Note that the team @ is not the team {@}).
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classical negation for classical formulas: M Ex ~a < Vse X : M k&, -a.
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Downward closure: M E=x ¢ and Y € X implies M =y ¢.
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Some properties and results:

The empty dependence atom =() is always true. Denote 1:= = =(). Then 1 = - =(x) but
S0 =L # = =(x) ==(x). S0 =1 > =6 =

On the other hand, let ¢ and v be strongly equivalent ¢ =" v iff ¢ = and -=¢ = ).
Then ¢ =* ¢ = —¢ =" —1p and more generally

P(x) =" P(x) = x[o(x)/Px] =" x[¥(x)/PX].

a is first order/classical if no dependence atoms appear in «. Classical formulas « are
flat: M =x a < Vse X: M =5 a. In particular, the dual negation coincides with the
classical negation for classical formulas: M Ex ~a < Vse X : M k&, -a.

Empty team property: M =4 ¢ for all ¢. (Note that the team @ is not the team {@}).
Downward closure: M E=x ¢ and Y € X implies M =y ¢.

Expressive equivalence with Z% over sentences (applies both to D both with and D
without the dual negation):

For any ¢ € D there is a ¢, € £1 (in the same vocabulary) s.t. M= ¢ < Mk ¢,.
For any ¢ € ¥ there is a x4 € D (in the same vocabulary) s.t. M ¢ < M x,.
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Burgess’ result: Let ¢, be sentences of D. The following are equivalent:
1. ¢ and ¢ are contradictory in that ¢,¢ = L (i.e. M k&= ¢ iff M ).
2. There is a sentence 6 € D such that ¢ =6 and ¢ = 6.

Suppose we know the set ||¢]| = {M | M = ¢} of models on which a sentence ¢ is true (without
knowing ¢) and we want to work out ||-g||.
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Burgess’ result: Let ¢, be sentences of D. The following are equivalent:
1. ¢ and ¢ are contradictory in that ¢,¢ = L (i.e. M k&= ¢ iff M ).
2. There is a sentence 0 € D such that ¢ =60 and ¢ = 0.

Suppose we know the set ||¢]| = {M | M = ¢} of models on which a sentence ¢ is true (without
knowing ¢) and we want to work out ||-¢||. If ¢ is classical, we know M | -¢ <= M H ¢.
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Suppose we know the set ||¢]| = {M | M = ¢} of models on which a sentence ¢ is true (without
knowing ¢) and we want to work out ||-¢||. If ¢ is classical, we know M | -¢ <= M H ¢.

Burgess: for any ¢ and v, if ||¢|| and ||¢)|| are disjoint, there is § with ||6]| = ||¢|| and ||-0]| = ||¢/]|-
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2. There is a sentence 0 € D such that ¢ =60 and ¢ = 0.
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Burgess’ result: Let ¢, be sentences of D. The following are equivalent:
1. ¢ and ¢ are contradictory in that ¢,¢ = L (i.e. M k&= ¢ iff M ).
2. There is a sentence 0 € D such that ¢ =60 and ¢ = 0.

Suppose we know the set ||¢]| = {M | M = ¢} of models on which a sentence ¢ is true (without
knowing ¢) and we want to work out ||-¢||. If ¢ is classical, we know M | -¢ <= M H ¢.

Burgess: for any ¢ and v, if ||¢|| and ||¢)|| are disjoint, there is § with ||6]| = ||¢|| and ||-0]| = ||¢/]|-

( 7

lloll Il

Il -]

- J

So given only ||¢|, ||-¢|| can be any set of models X, as long as that set is definable in D
(X =1l¢ll) and [|¢][n X = 2.
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Separation theorem: Let ¢, be sentences of D with 7 the vocabulary of ¢ and 7’ the
vocabulary of 4. If ¢ and v are contradictory in that ¢,9 = L (i.e. M E ¢ iff M b 1)), then
there is a first-order sentence 7 in the vocabulary 7 n 7’ such that ¢ =7 and ¢ & -n.
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Separation theorem: Let ¢, be sentences of D with 7 the vocabulary of ¢ and 7’ the
vocabulary of 4. If ¢ and v are contradictory in that ¢,9 = L (i.e. M E ¢ iff M b 1)), then
there is a first-order sentence 7 in the vocabulary 7 n 7’ such that ¢ =7 and ¢ & -n.

By expressive equivalence with T3, there are 3Sc, 3T 3 € X} such that ¢ = 3Sa and « is FO in
TU{S1,...S,};and ¢y =3TB and Bis FO in 7/ u{T1,... T,,}. We can assume the sets
{S1,...S,} and {T1,... T,,} are disjoint.
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Separation theorem: Let ¢, be sentences of D with 7 the vocabulary of ¢ and 7’ the
vocabulary of 4. If ¢ and v are contradictory in that ¢,9 = L (i.e. M E ¢ iff M b 1)), then
there is a first-order sentence 7 in the vocabulary 7 n 7’ such that ¢ =7 and ¢ & -n.

By expressive equivalence with T3, there are 3Sc, 3T 3 € X} such that ¢ = 3Sa and « is FO in
TU{S1,...S,};and ¢y =3TB and Bis FO in 7/ u{T1,... T,,}. We can assume the sets
{S1,...S,} and {T1,... T,,} are disjoint.

Since ¢ = 3Sav and ¢ = 3T 3, we have o = 3. By Craig’s interpolation for FO, there is a FO
sentence n in (TU{Sy,...,S,})n (7' u{Ty,..., T,}) =7n7" such that a =7 and n E -4.
Then also ¢ =7 and ¥ = . O

v
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Burgess’ result: Let ¢, be sentences of D. The following are equivalent:
1. ¢ and 1) are contradictory in that ¢, = 1 (i.e. M ¢ iff M ).

2. There is a sentence 6 € D such that ¢ =6 and ¢ = —6.
We assume |M| > 2 for all models M.
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Burgess’ result: Let ¢, be sentences of D. The following are equivalent:
1. ¢ and ¢ are contradictory in that ¢,¢ = L (i.e. M & ¢ iff M ).
2. There is a sentence 6 € D such that ¢ =6 and ¢ = —6.

We assume |M| > 2 for all models M.

2 = 1: By induction one shows x,-x & L for all .
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Burgess’ result: Let ¢, be sentences of D. The following are equivalent:
1. ¢ and ¢ are contradictory in that ¢,¢ = L (i.e. M & ¢ iff M ).
2. There is a sentence 6 € D such that ¢ =6 and ¢ = —6.

We assume |M| > 2 for all models M.

2 = 1: By induction one shows x,-x & L for all .

1 = 2: Let 6 := Vx =(x). Given our assumption, 6y = L and -6y = 1.
Let ¢g := ¢ v 6y and Yg =1 Vv 6y. Then:

%o = ¢V90 = oV 1 = ®
—¢o = -(¢Vvbp) = —¢ A =l = O AL
Similarly 19 =1 and =g = 1.

Il
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1. ¢ and ¢ are contradictory in that ¢,¢ = L (i.e. M & ¢ iff M ).
2. There is a sentence 6 € D such that ¢ =6 and ¢ = —6.
We assume |M| > 2 for all models M.

2 = 1: By induction one shows x,-x & L for all .

1 = 2: Let 6 := Vx =(x). Given our assumption, 6y = L and -6y = 1.
Let ¢g := ¢ v 6y and Yg =1 Vv 6y. Then:

%o = ¢V b = oVl = ¢
=g = -(¢Vvbp) = —¢ A =l = AL = L
Similarly 1o = 1 and —t)g = L. By the separation theorem let 7 be first-order such that ¢g =7
and g = -1. Let 6 := ¢g A (=1ho vV 1)). Then:
0  =don(-thoVvn) =¢on(LVn) =¢oAn = ¢o =¢

-0 =-(poA(-toVvn)) =-¢poV-(-tbovn) =1V (-—PoA-n) =tvoA-n =t =[O
™ = < 12/34
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Kontinen and Vaananen’s result: Let ¢, be formulas of D with free variables xi, ..., x,.
The following are equivalent:

1. ¢ and v are contradictory in that ¢, ¢ = 1 (i.e. M Ex ¢ and M =x ¢ implies X = @).

2. There is a formula 0 € D free variables xi, ..., x, such that ¢ =6 and ¢y = -6.
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Syntax of Aloni’s Bilateral state-based modal logic BSML
6

pl-¢lontovy| Od| Dg|NE

l.e. the syntax of classical modal logic together with the non-emptiness atom NE.

DA 14/34
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Syntax of Aloni's Bilateral state-based modal logic BSML

¢ = pl-¢lonyove] OolOg|NE

l.e. the syntax of classical modal logic together with the non-emptiness atom NE.

Modal team semantics: given a Kripke model M = (W, R, V), a team of M is a set of
possible worlds s ¢ W:

standard Kripke semantics team semantics
M, wE ¢ Ma SkE ¢
weW scW
Wp Wpq Wp Wpq
Wq w Wy w
Wp = p {Wpa qu} Ep

14/34
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0000000 0000

Semantics:

SsEp
s=p

SE ¢
s=-¢

SEoVY
sV

skEOP
s= O

SE NE
S = NE

where R[w] = {ve W |wRv}.

<~
<
<
<~
<
<
=
<

<
—

BSML Negation result for BSML Further remarks
0O@000000000 0000000 00

VYwes:we V(p)
Vwes:w¢ V(p)

s=¢
SE®

Jt,t':tut’' =sand tE= ¢ and t' =
s=¢and s=Hv

Vwes:JtcR[w]:t+Tand t = ¢
Ywes:R[w]=¢

S+QJ
s=0

(We can define A:==v—and O:= -0 =)

References
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A team s represents the information state of a speaker.
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A team s represents the information state of a speaker.

Bilateralism:

s = ¢ represents assertability by a speaker in state s

s = ¢ represents rejectability by a speaker in state s

At 16/34
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BSML is designed to account for natural language phenomena such as free choice inferences:

You may have coffee or tea.

~You may have coffee and you may have tea.

Aloni (2022) conjectures that in certain situations speakers " systematically neglect structures
which verify the sentence by virtue of some empty configuration.” In BSML we can model this
neglect of empty structures using NE. An account of free choice can then be made that relies
on the fact that the following entailment holds: &((c ANE) v (EANE)) E Oc A Ot
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BSML is designed to account for natural language phenomena such as free choice inferences:

You may have coffee or tea.

~You may have coffee and you may have tea.

Aloni (2022) conjectures that in certain situations speakers " systematically neglect structures
which verify the sentence by virtue of some empty configuration.” In BSML we can model this
neglect of empty structures using NE. An account of free choice can then be made that relies
on the fact that the following entailment holds: &((c ANE) v (EANE)) E Oc A Ot

The bilateral negation is designed to ensure one gets correct predictions on natural language
negation interacting with free choice inferences:

You may not have coffee or tea.
~» You may not have coffee and you may not have tea.

17/34



BSMLY: BSML with the global/inquisitive disjunction w:

SEQWY iff SE¢gorskEY
sHow iff sH4¢and s 59
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BSMLY: BSML with the global/inquisitive disjunction w:

SEQwWY iff sEgporskE
s=ow iff s=l¢and s=

We also define the following abbreviations:
Weak contradiction 1L :=pA-p. sE= 1 iff s=g.
Strong contradiction 1l := | ANE. s =1l is never the case.

(Strong) tautology T := pVv —p. s = T is always the case.

References
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Some properties:
As with D, we have failure of replacement for equivalents: L = -NE but

pV —-p = -l * --NE = NE. Replacement succeeds for strong equivalents.

oA 19/34
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Some properties:

As with D, we have failure of replacement for equivalents: L = -NE but
pV —-p = -l * --NE = NE. Replacement succeeds for strong equivalents.

Formulas of classical modal logic ML (formulas without NE or w) are flat: for a € ML:
seEaiff Ywes:wEa.
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Some properties:

As with D, we have failure of replacement for equivalents: L = -NE but
pV —-p = -l * --NE = NE. Replacement succeeds for strong equivalents.

Formulas of classical modal logic ML (formulas without NE or w) are flat: for a € ML:
seEaiff Ywes:wEa.

BSML is not downward closed and does not have the empty team property due to NE:

{wp,wq} = (pANE)V(qANE)
{wg} # (PANE)V(qANE)

19/34
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The bisimilarity relation between pointed models captures equivalence with respect to ML.
(M, w) is a Pointed model (over a set of propositional symbols ®) if M is a model over ¢
and we W.

(M,w) and (M’,w") (where both models are over supersets of ®) being k-bisimilar (wrt ®)
M,w = M’ w' is defined recursively by:

ws=gw < forallped® wehave w p < w'Ep.

P l =%
ws=,w <= w=5 w and

[forth] for all v € R[w] there is a v’ € R'[w'] such that v =,
[back] for all v/ € R'[w'] there is a v € R[w] such that v Se,,

Modal depth of ¢ (md(¢)): measure of the maximum nesting of < in ¢.
Let P(¢) be the set of proposition symbols used in ¢.

(M,w) and (M’,w") are k-equivalent (wrt ®) M,w =} M’ w' iff

wE ¢ < w' E ¢ forall ¢ with md(¢) < k and P(¢) c®

wsPw = w=pw

20/34



Hintikka formulas: characteristic formulas for worlds
®,0 o
XM,W T
 k+1

MNplweV(p)iaN{-p|weV(p)} (ped)
Xmal = oA A Oxmean x
veR[w] veR[w
wEXSK S wsPw = w=pw

APEN G4
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Hintikka formulas: characteristic formulas for worlds

XS, = NplweV)IaAA{-plweV(p)} (ped)
Xmal = oA A Oxmean x
veR[w] veR[w

wWEXSK = wsiw = w=w

These can be used to define a disjunctive normal form for ML:
Property (over ®): set of pointed models (over ®).
Property (over ®) defined by o € ML: |a]e:= {(M,w) over ® |w E a}.

Normal form for ML: for « e ML: for ®2 P(a): = \/ x&md(e),
(M, w)elalo

References
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Pointed (team) model (over ®): (M,s) where s is a team on M, a model over ®.

Ay 22/34



Team bisimulation:

P
S =y

s =

Pointed (team) model (over ®): (M,s) where s is a team on M, a model over ®.

forth: Vwes:Inw' es’ 1w =

L

Ay 22/34



Team bisimulation:

P
S =y

s =

Pointed (team) model (over ®): (M,s) where s is a team on M, a model over ®.

forth: Vwes:Iw' es’:w =

2w
o}

back: Vw'es :Iwes:w = w

Ay 22/34



Team bisimulation:

P
S =y

Pointed (team) model (over ®): (M,s) where s is a team on M, a model over ®.
s'ie—=

forth: Vwes:EIw’es’:w':,}’(> w'
®

back: Vw'es :Iwes:w =P w

@,k

O
9

GM s

Characteristic formulas for teams:

= 1

ifs=@
\/(Xd,\)jkw ANE) ifs+@
wes ’

oA 22/34
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Pointed (team) model (over ®): (M,s) where s is a team on M, a model over .

. . - 4
Team bisimulation: 7 g
e i)
s=Ps =
forth: Vwes:3Iw' es’ 1w ‘:,2’ w’
. / /. . PRI
back: Vw'es :Iwes:w = w ws A w,
S 5'
Characteristic formulas for teams:
bk : _
Qg,f = 1 o ifs=0
Ovis = V(XpywANE) ifs+g

wes

SEIP, = s=Ps — s=0¢

Further remarks References
o]

22/34



Team property (over ®): set of pointed team models (over ®)

Property (over ®) defined by ¢ ||¢||o:= {(M,s) over ®|s = ¢}

Normal form for BSML": for ¢ e BSML" : for ® 2 P(¢): ¢ =

VAR
(M.5)el¢llo

A 23734



Overview FO dependence logic Burgess' result BSML Negation result for BSML Further remarks References
[e] 0000000 0000 0000000000e 0000000

Propositional fragments:

Team over ®: a subset of 2%.

Team property (over ®): a subset of p(2%).

Property (over ®) defined by ¢ ||¢]lo:= {s 2% |s ¢}

Propositional characteristic formulas: let p*(P) = p if w = p and p*(P) = <p if w = —p.

X‘;;:/\pw(”) vhxqm),c»vzw
ped

02 :=\/ (xo ANE)  tE6O? = s=t o=V VuANE) (¢2P(¢))
wes se||¢>||¢ Wes
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In D, we used the following as our notion of contradictoriness for the negation theorem:
¢ and 1 are contradictoryy : o, =1

MEx ¢ and M =x ¢ implies X =&

if ¢,1 are sentences: M E ¢ < MEY

A 25/34
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In D, we used the following as our notion of contradictoriness for the negation theorem:

¢ and 1 are contradictory; : o, Y EL
— MEx ¢ and M =x ¢ implies X =@

— if ¢, are sentences: M= ¢ <= MKy

This is not appropriate in a setting with NE and w. Take ¢ := L W (p ANE) and
Y:i=1w((pANE)V (-pANE)).

References
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In D, we used the following as our notion of contradictoriness for the negation theorem:

¢ and 1 are contradictory; : o, Y EL
— MEx ¢ and M =x 9 implies X = &
— if ¢, are sentences: M= ¢ <= MKy

This is not appropriate in a setting with NE and w. Take ¢ := L W (p ANE) and

:=1Ww((pPANE)V (-pANE)). Then ¢, k= L so the negation result would give us 0 s.t.
0= ¢ and -0 = .

25/34
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In D, we used the following as our notion of contradictoriness for the negation theorem:

¢ and 1 are contradictory; : o, Y EL
— MEx ¢ and M =x 9 implies X = &
— if ¢, are sentences: M= ¢ <= MKy

This is not appropriate in a setting with NE and w. Take ¢ := L W (p ANE) and
:=1Ww((pPANE)V (-pANE)). Then ¢, k= L so the negation result would give us 0 s.t.
0 = ¢ and -0 = . One can show:

Lemma: For all n: if M,s =n and M,t = —-n, then snt=ga.

But we have {w,} = ¢ and {w,, w_,} = ¢ so {w,} £ 6 and {w,, w_,} = —-0. Therefore
{Wp} n {Wp, Wﬁp} = {Wp} = @&, a contradiction.

25/34



¢ and 1 are contradictoryy :

MEx ¢ and M E=x i implies X =@
Instead we essentially use (the modal analogue of) the following notion:
¢ and 1) are contradictory, :

MiEx ¢ and M=y ) implies XnY =g

A 26/34
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¢ and ) are contradictoryy : MEx ¢ and M E=x ¢ implies X = @
Instead we essentially use (the modal analogue of) the following notion:
¢ and v are contradictorys : MEx ¢ and M ey ¢ implies XnY =g
These are equivalent in the downward-closed setting of dependence logic:

Contradictory, always implies contradictory:
Let ¢, be contradictory,. If M Ex ¢ and M =x 1) then Xn X =X = @.

Contradictory; implies contradictory, if ¢, are downward closed:
Let ¢, be contradictory;. If M =x ¢ and M =y 9, by downward closure M =xny ¢ and
MExay Y so XnY =g.
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¢ and ) are contradictoryy : MEx ¢ and M E=x ¢ implies X = @
Instead we essentially use (the modal analogue of) the following notion:
¢ and v are contradictorys : MEx ¢ and M ey ¢ implies XnY =g
These are equivalent in the downward-closed setting of dependence logic:

Contradictory, always implies contradictory:
Let ¢, be contradictory,. If M Ex ¢ and M =x 1) then Xn X =X = @.

Contradictory; implies contradictory, if ¢, are downward closed:
Let ¢, be contradictory;. If M =x ¢ and M =y 9, by downward closure M =xny ¢ and
MExay Y so XnY =g.

The equivalence does not hold in our setting: Lw (pANE) and L w ((pANE) vV (-pANE)) are
(the modal analogue of) contradictory; but not contradictory,.
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Define:
ol = {(M,w) over ® | 3s:wesand M,s = ¢}

|#|e is Hodges' notion of the flattening of ¢; or the informative content of ¢ in inquisitive
semantics.

For o € ML, |a|e above coincides with our previous definition |a|e = {(M, w) over
| M, w k= al.

In the propositional setting, |¢|e = U||d||o-

¢ and v are contradictory : |6l N |¢]|e = @ (where ® = P(¢) U P(v))
— M,s= ¢ and M, t =1 implies snt=o
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Separation theorem: If
¢ and 1) are contradictory :

<~

|dle N[¢]e =@ (where ® = P(¢) U P())
M,sk= ¢ and M, t = impliessnt=g
then there is a 7 € ML such that ¢ =7 and ¢ = -1 and P(n) = P(¢) n P(v).
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Separation theorem: If

¢ and 1 are contradictory : [dlo N |¢|e = @ (where & = P(p) U P(v))
— M,s= ¢ and M,t =1 impliessnt=o

then there is a 7 € ML such that ¢ =7 and ¢ = -1 and P(n) = P(¢) n P(¥).

Proof (for the propositional fragment).

Recall that ¢ = Wse\|¢|\p(¢) VWES(x5(¢) ANE) and similarly for .

= =7 = = = o}
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Separation theorem: If

¢ and 1 are contradictory : [dlo N |¢|e = @ (where & = P(p) U P(v))
— M,s= ¢ and M,t =1 impliessnt=o

then there is a 7 € ML such that ¢ =7 and ¢ = -1 and P(n) = P(¢) n P(¥).

Proof (for the propositional fragment).

Recall that ¢ = Wse\|¢|\p(¢) VWES(x5(¢) ANE) and similarly for .

P P
Let 11 1= Vse|igllp gy Vwes Xo? and = Vsell@llp(yy Vwes L

= =7 = = = o}
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Separation theorem: If
¢ and v are contradictory : [dlo N |¢|e = @ (where & = P(p) U P(v))

— M,s= ¢ and M, t =1 implies snt =02

then there is a 7 € ML such that ¢ =7 and ¢ = -1 and P(n) = P(¢) n P(¥).

Proof (for the propositional fragment).

Recall that ¢ = Wse\|¢|\p(¢) VWES(x5(¢) ANE) and similarly for .

P P 3
Let 11 1= Vse|igllp gy Vwes Xo? and = Vsellpllpeyy Vwes Xb*) Then ¢ = m and [mlp(p)y = |9lpcgy (in fact,

since 1 is flat, [m|p(gy = ©(Ilp(g)))- Similarly ¥ = n2 and |n2|peyy = [Wlpey) -

= o}
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Separation theorem: If

¢ and 1 are contradictory : [dlo N |¢|e = @ (where & = P(p) U P(v))
— M,s= ¢ and M,t =1 impliessnt=o

then there is a 7 € ML such that ¢ =7 and ¢ = -1 and P(n) = P(¢) n P(¥).

Proof (for the propositional fragment).

Recall that ¢ = WSéH¢HP(¢) VWES(x5(¢) ANE) and similarly for .
P P :

Let 11 1= Vse|igllp gy Vwes Xo? and = Vsellpllpeyy Vwes Xb*) Then ¢ = m and [mlp(p)y = |9lpcgy (in fact,
since 1 is flat, [m|p(gy = ©(Ilp(g)))- Similarly ¥ = n2 and |n2|peyy = [Wlpey) -

Locality: values for ®\P(¢) do not affect the evaluation of ¢ (i.e. for w € 2® wE ¢ — w tp(g)E B)-

Therefore [n1|o = [¢lo <= mlp(g) = [9lp(s) and so [mi|o = |ple. Similarly [72]e = [¢]e-

= =7 = = = o}

28/34



Overview FO dependence logic Burgess' result BSML Negation result for BSML Further remarks References
0000000 0000 00000000000 000e000 (o]

Separation theorem: If

¢ and 1 are contradictory : [dlo N |¢|e = @ (where & = P(p) U P(v))
— M,s= ¢ and M,t =1 impliessnt=o

then there is a 7 € ML such that ¢ =7 and ¢ = -1 and P(n) = P(¢) n P(¥).

Proof (for the propositional fragment).

Recall that ¢ = WSéH¢HP(¢) VWES(x5(¢) ANE) and similarly for .
P P :
Let 11 1= Vse|igllp gy Vwes Xo? and = Vsellpllpeyy Vwes Xb*) Then ¢ = m and [mlp(p)y = |9lpcgy (in fact,
since 1 is flat, [m|p(gy = ©(Ilp(g)))- Similarly ¥ = n2 and |n2|peyy = [Wlpey) -
Locality: values for ®\P(¢) do not affect the evaluation of ¢ (i.e. for w € 2® wE ¢ — w tp(g)E B)-

Therefore [m1|o = [dle <= In1lp(s) = |¢lp(¢) and so [ni]e = [¢le. Similarly |n2]e = [1b]e.

We show 71 = -2 (in standard single-valuation semantics). Assume w = 7.
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Separation theorem: If

¢ and 1 are contradictory : [dlo N |¢|e = @ (where & = P(p) U P(v))
— M,s= ¢ and M,t =1 impliessnt=o

then there is a 7 € ML such that ¢ =7 and ¢ = -1 and P(n) = P(¢) n P(¥).

Proof (for the propositional fragment).

Recall that ¢ = WS€H¢HP(¢) VWes(X5(¢) ANE) and similarly for .
P P :

Let 11 1= Vse|igllp gy Vwes Xo? and = Vsellpllpeyy Vwes Xb*) Then ¢ = m and [mlp(p)y = |9lpcgy (in fact,
since 1 is flat, [m|p(gy = ©(Ilp(g)))- Similarly ¥ = n2 and |n2|peyy = [Wlpey) -

Locality: values for ®\P(¢) do not affect the evaluation of ¢ (i.e. for w € 2® wE ¢ — w tp(g)E B)-
Therefore [m1|o = [dle <= In1lp(s) = |¢lp(¢) and so [ni]e = [¢le. Similarly |n2]e = [1b]e.

We show 71 = -2 (in standard single-valuation semantics). Assume w = 11.Then w € |n1| = |¢|. Therefore
w ¢ || = |m2| and so w F 2, whence w = —np.

= =7 = = = o}
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Separation theorem: If

¢ and 1 are contradictory : [dlo N |¢|e = @ (where & = P(p) U P(v))
— M,s= ¢ and M,t =1 impliessnt=o

then there is a 7 € ML such that ¢ =7 and ¢ = -1 and P(n) = P(¢) n P(¥).

Proof (for the propositional fragment).

Recall that ¢ = WS€H¢HP(¢) VWes(X5(¢) ANE) and similarly for .

P P 3
Let 11 1= Vse|igllp gy Vwes Xo? and = Vsellpllpeyy Vwes Xb*) Then ¢ = m and [mlp(p)y = |9lpcgy (in fact,

since 1 is flat, [m|p(gy = ©(Ilp(g)))- Similarly ¥ = n2 and |n2|peyy = [Wlpey) -
Locality: values for ®\P(¢) do not affect the evaluation of ¢ (i.e. for w € 2® wE ¢ — w tp(g)E B)-

Therefore [m1|o = [dle <= In1lp(s) = |¢lp(¢) and so [ni]e = [¢le. Similarly |n2]e = [1b]e.

We show 71 = -2 (in standard single-valuation semantics). Assume w = 11.Then w € |n1| = |¢|. Therefore
w ¢ || = |m2| and so w F 2, whence w = —np.

Let 1 be the (classical) interpolant of 71 and —n2. Then P(n) = P(n1) N P(n2) = P(¢) N P(¢) and ¢ =m1 =1
and ¢ = mp = . O

v

= =7 = = = o}
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Lemma 1: For all : if M,s=nand M,t = -, then snt=g.
Lemma 2: For any ¢ there is a ¢’ such that ¢ = ¢’ and —¢’ i NE.
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Lemma 1: For all n: if M,;s=n and M,t = -1, then snt=g.

Lemma 2: For any ¢ there is a ¢’ such that ¢ = ¢’ and —-¢' i NE.

Theorem: For any ¢,1 ¢ BSML (BSML") the following are equivalent:
1. ¢ and 1 are contradictory in that |¢|e N |t]e =@ (P = P(¢) U P(v)).
2. There is a e BSML (BSML") such that ¢ = 6 and ) = 0.

2 = 1. If M,sk=¢ and M, t =, then M,;s=60 and M,t = -0 so snt = by Lemma 1.
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Lemma 1: For all n: if M,;s=n and M,t = -1, then snt=g.

Lemma 2: For any ¢ there is a ¢’ such that ¢ = ¢’ and —-¢' i NE.

Theorem: For any ¢,1 ¢ BSML (BSML") the following are equivalent:
1. ¢ and 1 are contradictory in that |¢|e N |t]e =@ (P = P(¢) U P(v)).
2. There is a e BSML (BSML") such that ¢ = 6 and ) = 0.

2 = 1. If M,sk=¢ and M, t =, then M,;s=60 and M,t = -0 so snt = by Lemma 1.
1 = 2: Let 6p:=<O(L v=1). Then:

O =0(Lv-L) =01 =1
-0 =-0C(Lv-1) =oO-(Lv-1) =0(-ULA--1L) =0O(-LAL) =0L =1
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2. There is a e BSML (BSML") such that ¢ = 6 and ) = 0.

2 = 1. If M,sk=¢ and M, t =, then M,;s=60 and M,t = -0 so snt = by Lemma 1.
1 = 2: Let 6p:=<O(L v=1). Then:

O =0(Lv-L) =01 =1
-0 =-0C(Lv-1) =oO-(Lv-1) =0(-ULA--1L) =0O(-LAL) =0L =1

By the Lemma let ¢, be such that ¢’ = ¢ and ' = and —¢’ £ NE and -1’ ¥ NE. Let

o :=¢' v O and g := ' v Oy so that g9 = ¢’ = ¢ and ~¢pg = ~¢’ A -0y = L, and similarly for
1)p. By the separation theorem let 17 € ML be such that ¢g =7 and ¥y = —-n. Then letting

0 := o A (=g V1) we have 6 = ¢ and -0 = 1) as before. O

v
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Theorem: For any ¢,1 ¢ BSML (BSML") the following are equivalent:
1. ¢ and ® are contradictory in that ||le N |[Y]e =@ (¢ = P(¢p) U P())).
2. There is a e BSML (BSML") such that ¢ =6 and 1 = 0.
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Alternatively, we can construct a formula for BSMLY which does not use 6 (and does not
require the use of modalities). Note that - 1= -1V -NE=T.

Let 1 be the separation formula and let 6’ :

==

((=v 1) w =((=pv 1) w ).
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Alternatively, we can construct a formula for BSML"Y which does not use 6, (and does not
require the use of modalities). Note that - 1= -1V -NE=T.

Let 7 be the separation formula and let 6 := =((=¢v 1) W =((=tpv 1) w n)).We have:

0 = ((-pv )WV D) wn))  =-(-gv DAYy 1) W) =(SAT)A(Lwn) =éAn
-0 = (=¢v 1) W ~((-v 1) wn) =1 w(=(-vV 1) A -n) =(WAT)A-D =1y A-n

I
< ©
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If the modalities, the quantifiers and W are not used, this type of result is at least restricted
somewhat; e.g.:

Propositional dependence logic PD with the dual negation:
¢ = plLlT]=(p1,- - pn,p) [ =S| dAY| PV

Define the flattening ¢’ of ¢ € PD by ¢f = ¢[T/ =(p1,...,pn, p)] (for all dependence atoms
=(p1,...,Pn,p)). (Vadnanen's syntactical notion of flattening.)
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If the modalities, the quantifiers and w are not used, this type of result is at least restricted
somewhat; e.g.:

Propositional dependence logic PD with the dual negation:
¢ = plLlT]=(p1,- - pn,p) [ =S| dAY| PV

Define the flattening ¢’ of ¢ € PD by ¢f = ¢[T/ =(p1,...,pn, p)] (for all dependence atoms
=(p1,...,Pn,p)). (Vadnanen's syntactical notion of flattening.)

For a classical formula a: |ale = {v €2® | v(a) = 1} and |-ale = 2®\|ale. So also

67 |o = 2%\[-¢o.

One can show that for all ¢ € PD :|¢|o = |¢F|o. (So Hodges' notion of flattening coincides with
Vidananen's; this is not the case in FO/modal dependence logic.)

So in particular, if ¢ and v are such that § = ¢ and -0 =, then
[Blo = 10lo = 10"|o = 2%\[=0"]o = 2°\|(=0) ]o = 2°\|-0l6 = 2°\[¢]o.
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Burgess’ (2003) assessment of his theorem:

In recent years Hintikka and co-workers have revived a variant version of the logic of Henkin sen-
tences under the label “independence-friendly” logic, have restated many theorems about existential
second-order sentences for this “new” logic, and have made very large claims about the philosophical
importance of the theorems thus restated. In discussion, pro and con, of such philosophical claims it
has not been sufficiently emphasized that contrariety, the only kind of “negation” available, fails to
correspond to any operation on classes of models. For this reason it seemed worthwhile to set down,
in the form of the corollary above, a clear statement of just how total the failure is.
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second-order sentences for this “new” logic, and have made very large claims about the philosophical
importance of the theorems thus restated. In discussion, pro and con, of such philosophical claims it
has not been sufficiently emphasized that contrariety, the only kind of “negation” available, fails to
correspond to any operation on classes of models. For this reason it seemed worthwhile to set down,
in the form of the corollary above, a clear statement of just how total the failure is.

Without weighing in on the philosophical debate, we briefly note that the above might be slightly misleading:

All logical symbols corresponding to operations on classes of models in the way Burgess is after would
seem to be tantamount to the semantics being compositional in a unilateral sense. But Hintikka (1996)
repeatedly argued against compositionality.
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in the form of the corollary above, a clear statement of just how total the failure is.

Without weighing in on the philosophical debate, we briefly note that the above might be slightly misleading:

All logical symbols corresponding to operations on classes of models in the way Burgess is after would
seem to be tantamount to the semantics being compositional in a unilateral sense. But Hintikka (1996)
repeatedly argued against compositionality.

On the other hand, Hodges (1997) had already shown that IF logic has a compositional semantics. In this
semantics, one takes the semantic value of a formula ¢ to be the pair (||¢||,||-¢||). Negation then
corresponds to the operation of flipping the elements of the pair. If one accepts a bilateral /rejectionist
view on negation, having the semantic value consist of both ||¢|| and ||-¢|| is as desired. Burgess then
appears to take the correctness of the unilateral /assertionist view on negation for granted.
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importance of the theorems thus restated. In discussion, pro and con, of such philosophical claims it
has not been sufficiently emphasized that contrariety, the only kind of “negation” available, fails to
correspond to any operation on classes of models. For this reason it seemed worthwhile to set down,
in the form of the corollary above, a clear statement of just how total the failure is.

Without weighing in on the philosophical debate, we briefly note that the above might be slightly misleading:

All logical symbols corresponding to operations on classes of models in the way Burgess is after would
seem to be tantamount to the semantics being compositional in a unilateral sense. But Hintikka (1996)
repeatedly argued against compositionality.

On the other hand, Hodges (1997) had already shown that IF logic has a compositional semantics. In this
semantics, one takes the semantic value of a formula ¢ to be the pair (||¢||,||-¢||). Negation then
corresponds to the operation of flipping the elements of the pair. If one accepts a bilateral /rejectionist
view on negation, having the semantic value consist of both ||¢|| and ||-¢|| is as desired. Burgess then
appears to take the correctness of the unilateral /assertionist view on negation for granted.

Hintikka (1996) argued that "in any sufficiently rich language, there will be two different notions of
negation present” — the dual negation — and the contradictory negation ~. He introduced a version of IF
logic with ~ (extended IF logic).
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